Talin, vinculin and DRP (utrophin) concentrations are increased at mdx myotendinous junctions following onset of necrosis.

نویسندگان

  • D J Law
  • D L Allen
  • J G Tidball
چکیده

Duchenne muscular dystrophy (DMD) and the myopathy seen in the mdx mouse both result from absence of the protein dystrophin. Structural similarities between dystrophin and other cytoskeletal proteins, its enrichment at myotendinous junctions, and its indirect association with laminin mediated by a transmembrane glycoprotein complex suggest that one of dystrophin's functions in normal muscle is to form one of the links between the actin cytoskeleton and the extracellular matrix. Unlike Duchenne muscular dystrophy patients, mdx mice suffer only transient muscle necrosis, and are able to regenerate damaged muscle tissue. The present study tests the hypothesis that mdx mice partially compensate for dystrophin's absence by upregulating one or more dystrophin-independent mechanisms of cytoskeleton-membrane association. Quantitative analysis of immunoblots of adult mdx muscle samples showed an increase of approximately 200% for vinculin and talin, cytoskeletal proteins that mediate thin filament-membrane interactions at myotendinous junctions. Blots also showed an increase (143%) in the dystrophin-related protein called utrophin, another myotendinous junction constituent, which may be able to substitute for dystrophin directly. Muscle samples from 2-week-old animals, a period immediately preceding the onset of muscle necrosis, showed no significant differences in protein concentration between mdx and controls. Quantitative analyses of confocal images of myotendinous junctions from mdx and control muscles show significantly higher concentrations of talin and vinculin at the myotendinous junctions of mdx muscle. These findings indicate that mdx mice may compensate in part for the absence of dystrophin by increased expression of other molecules that subsume dystrophin's mechanical function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular and cellular adaptations to chronic myotendinous strain injury in mdx mice expressing a truncated dystrophin.

Myotendinous strain injury is the most common injury of human skeletal muscles because the majority of muscle forces are transmitted through this region. Although the immediate response to strain injury is well characterized, the chronic response to myotendinous strain injury is less clear. Here we examined the molecular and cellular adaptations to chronic myotendinous strain injury in mdx mice...

متن کامل

Talin at myotendinous junctions

Junctions formed by skeletal muscles where they adhere to tendons, called myotendinous junctions, are sites of tight adhesion and where forces generated by the cell are placed on the substratum. In this regard, myotendinous junctions and focal contacts of fibroblasts in vitro are analogues. Talin is a protein located at focal contacts that may be involved in force transmission from actin filame...

متن کامل

Identification of FHL1 as a therapeutic target for Duchenne muscular dystrophy.

Utrophin is a potential therapeutic target for the fatal muscle disease, Duchenne muscular dystrophy (DMD). In adult skeletal muscle, utrophin is restricted to the neuromuscular and myotendinous junctions and can compensate for dystrophin loss in mdx mice, a mouse model of DMD, but requires sarcolemmal localization. NFATc1-mediated transcription regulates utrophin expression and the LIM protein...

متن کامل

The subcellular distribution of chromosome 6-encoded dystrophin-related protein in the brain

Chromosome 6-encoded dystrophin-related-protein (DRP) shows significant structural similarities to dystrophin at the carboxyl terminus, though the two proteins are encoded on different chromosomes. Both DRP and dystrophin are expressed in muscle and brain and show some similarity in their subcellular localization. For example, in skeletal muscle both are expressed at neuromuscular and myotendin...

متن کامل

A protein homologous to the Torpedo postsynaptic 58K protein is present at the myotendinous junction

The 58K protein is a peripheral membrane protein enriched in the acetylcholine receptor (AChR)-rich postsynaptic membrane of Torpedo electric organ. Because of its coexistence with AChRs in the postsynaptic membrane in both electrocytes and skeletal muscle, it is thought to be involved in the formation and maintenance of AChR clusters. Using an mAb against the 58K protein of Torpedo electric or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 107 ( Pt 6)  شماره 

صفحات  -

تاریخ انتشار 1994